Biology

PreImplantation Factor Reduces Graft-versus-Host Disease by Regulating Immune Response and Lowering Oxidative Stress (Murine Model)

Yehudith Azar1,1, Reut Shainer1,1, Osnat Almogi-Hazan1, Rachel Bringer1, Susan R. Compton2, Michael J. Paidas3, Eytan R. Barnea4,5,6,*, Reuven Or1,‡

1Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
2Department of Comparative Medicine, Yale University School of Medicine, Yale University, New Haven, Connecticut
3Yale Women and Children’s Center for Blood Disorders, Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
4Society for the Investigation of Early Pregnancy, Cherry Hill, New Jersey
5BioIncept, Cherry Hill, New Jersey
6Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut

Article history:
Received 15 March 2012
Accepted 17 December 2012

Key Words:
Embryo-derived therapy
Transplant acceptance
Immune regulation
Graft-versus-leukemia
Mismatch

ABSTRACT
Bone marrow transplantation (BMT) to treat severe hematologic malignancies often leads to potentially fatal acute graft-versus-host disease (GVHD), despite attempts at better donor–recipient matching and/or use of immunosuppressive agents. We report that embryo-derived PreImplantation Factor (PIF) plays a determining role in developing maternal/host tolerance toward the semiallogeneic or total allogeneic embryo and in regulating systemic immune response. Synthetic PIF treatment has proven effective in preventing immune attacks in nonpregnant models of autoimmunity. In this study, we tested the capability of PIF to prevent the development of acute GVHD in semiallogeneic or totally allogeneic murine BMT models. We examined the regulatory effect of PIF both in vivo and in vitro to control deleterious GVHD while maintaining its ability to preserve the beneficial graft-versus-leukemia (GVL) effect. Bone marrow and spleen cells from C57BL/6 donors were transplanted in semiallogeneic (C57BL/6×BALB/c) F1 or allogeneic (BALB/c) mice, which were then treated with PIF 1 mg/kg/day for 2 weeks. Short-term PIF administration reduced acute GVHD in both models and increased survival for up to 4 months after semiallogeneic or totally allogeneic BMT. This effect was coupled with decreased skin inflammation (semiallogeneic model) and decreased liver inflammation (both models), as well as reduced colon ulceration (allogeneic model). GVHD-associated cytokine and chemokine gene expression were decreased in the liver. PIF further lowered circulating IL-17 levels, but not IFN-γ levels. Both in vivo and in vitro, PIF treatment was demonstrated to lead to decreased inducible nitric oxide synthase expression and decreased lipopolysaccharide-activated macrophages to lower nitric oxide secretion. Significantly, PIF did not diminish the beneficial GVL effect in the B cell leukemia model. PIF acts primarily by inducing the regulatory phenotype on monocytes/antigen-presenting cells, which controls T cell proliferation. Overall, our data demonstrate that PIF protects against semiallogeneic and allogeneic GVHD long term by reducing both target organ and systemic inflammation and by decreasing oxidative stress, while preserving the beneficial GVL effect.

© 2013 American Society for Blood and Marrow Transplantation.

INTRODUCTION
Allogenic bone marrow transplantation (BMT), performed in thousands of patients each year, is a well-established treatment modality for malignant and nonmalignant hematologic diseases. Within this type of stem cell graft, mature donor T cells are the main mediators of the beneficial induction of the beneficial graft-versus-leukemia (GVL) effect that prevents relapse of malignancy [1,2]. Unfortunately, these same cells also induce graft-versus-host disease (GVHD), a major cause of morbidity and mortality in BMT recipients [3]. Recent studies suggest the involvement of the inflammatory Th1 response as well as Th17 cells in autoimmunity [4,5].

Acute GVHD is characterized by widespread damage, affecting mainly target organs, such as the skin, liver, and gastrointestinal tract [6]. Protecting these vital organs and preventing the return of malignancy after immunosuppressive drug administration remain difficult clinical challenges.

Treating GVHD also poses serious challenges. Standard GVHD prophylaxis and therapy involve the use of drugs that cause generalized immune suppression, placing patients in danger of opportunistic infections and tumor relapse [2]. The initial management of acute GVHD usually includes steroids in combination with other immunosuppressive agents; however, this treatment is not effective in all patients [3]. Steroid-resistant GVHD may result in death [7]. Additional agents have been evaluated for treating and preventing GVHD [8], but none is currently in clinical use.

The ideal GVHD prophylaxis would exert 2 effects simultaneously: (1) prevent the grafted bone marrow cells from attacking their new host, and (2) sustain and maintain the new marrow’s ability to destroy the host’s remaining cancer
cells. To obtain such a comprehensive effect, we turn to pregnancy, which we characterize as both a perfect immune regulatory environment and a successful transplantation model. The host/mother’s immune system accepts a semi-allogeneic embryo (or a totally allogeneic one, in the case of a donor embryo) successfully. In pregnancies associated with infection or immune disorders, embryo tolerance continues to be preserved while maternal ability to fight disease is not only not impaired but may even become heightened, as needed. Pregnancy is an immune tolerant state, not an immunosuppressed state, in which the embryo/graft and mother/host synergize for best results. A number of mechanisms are involved in this feto-maternal tolerance. Some of these include modulated/regulatory immune cells, such as M2 macrophages and uterine natural killer (NK) cells [9,10]. Thus, the immunologic profile of pregnancy is compatible with that of the desired GVHD prophylaxis [11-14].

Our research found that Preimplantation Factor (PIF), an evolutionary conserved embryo-derived peptide (MVRKPKGSANKPSDD), is expressed by the embryo/fetus and placenta and present in the maternal circulation of viable pregnancies [15-20]. Our group demonstrated that synthetic PIF modulates decidual immunity [21,22], reduces NK cell toxicity, and promotes trophoblast invasion, which is required for successful fetal development [23]. It also has been demonstrated that PIF’s global immune regulatory properties play an essential role in mediating pregnancy’s unique immune milieu, allowing maintained defenses against pathogens and disease [20]. We reported that PIF orchestrates global anti-inflammatory effects in human peripheral blood mononuclear cells. PIF binds naive CD14+ cells (monocytes/leukocytes), and in activated peripheral blood T cells and B cells, it blocks mixed lymphocyte reaction (MLR) proliferation and leads to a Th2 cytokine bias while preserving the Th1-type response. This was evidenced by the effect of secretion and confirmed by gene expression [24]. We also reported that low-dose PIF is effective in reducing NK cell toxicity by reducing critical CD69 expression [25].

In nonpregnant mice, we have demonstrated that PIF reverses paralysis and blocks spinal cord inflammation while promoting neural repair (chronic experimental autoimmune encephalomyelitis model) [26-28]. PIF also was shown to prevent autoimmune diabetes while restoring pancreatic function and insulin expression (nonobese diabetic model) [28]. In both models, PIF acts by reducing oxidative stress and inhibiting proinflammatory cytokine expression [26,28].

In the present study, we investigated the ability of PIF administration to prevent allotransplantation and acute GVHD in a murine BMT model [29]. We examined PIF-induced protection by evaluating proinflammatory protein expression in GVHD-affect ed tissues, as well as relevant circulating cytokine levels. We assessed the effect of PIF on maintaining the important beneficial GVL effect. Finally, we identified the mechanisms involved in PIF-induced protection using cultured immune cells. We report that short-term, low-dose PIF protects against the development of acute GVHD while diminishing proinflammatory mediators. PIF-protective effects are exerted through monocytes, in which the reduced inducible nitric oxide synthase (iNOS) expression decreases nitric oxide (NO) secretion, thereby protecting against oxidative stress.

METHODS

Animals

Female 8- to 11-week-old C57BL/6, BALB/c, and C57BL/6xBALB/c F1 mice were obtained from Harlan Laboratories (Jerusalem, Israel). The study was conducted under appropriate conditions and was approved by the Institutional Animal Care and Use Committee of the Hebrew University of Jerusalem in accordance with national laws and regulations for the protection of animals.

BMT

Recipient (C57BL/6xBALB/c) F1, BALB/c, or C57BL/6 mice received lethal whole-body irradiation with a single dose of 1000 rad (semiallogeneic and autologous) or 800 rad (allogeneic), and were reconstituted with 8 × 10^6 donor C57BL/6 bone marrow cells and 1.2 × 10^7 (semiallogeneic and autologous) or 2 × 10^7 (allogeneic) spleen cells administered to the tail vein on the following day. Bone marrow from donor mice was collected by flushing of the femur, humerus, and tibia into Dulbecco’s PBS (Biological Industries, Kibbutz Beit Haemek, Israel). Spleens were crushed through 70-μm screens into PBS. Bone marrow mononuclear cells and splenocytes were isolated after centrifugation on a Ficoll-Paque gradient. Percent BMT chimerism was measured in blood samples obtained 30 days after transplantation by fluorescent-activated cell sorting (FACS) analysis.

Peptide Synthesis

Synthetic PIF (MVRKPKGSANKPSDD) and scrambled PIF peptide (PIFscr) (GRVPDNSKNMPKDA) as a control were obtained by solid-phase peptide synthesis (Peptide Synthesizer, Applied Biosystems, Foster City, CA) using 9-fluorenylmethoxycarbonyl chemistry. FITC-labeled PIF (FITC-PIF) and PIFscF (FITC-PIFscF) were produced by adding FITC on the N-terminus of PIF in the solid phase using L-alanine as a spacer. Final purification was performed by reversed-phase HPLC, and peptide identity was verified by matrix-assisted laser desorption/ionization—time of flight mass spectrometry and amino acid analysis, purified to >95% by HPLC, and documented by mass spectrometry at Bio-Synthesis (Lewisville, TX).

PIF Administration

PIF or PIFscF was dissolved in PBS. Solvent peptide or PBS alone (as a control) was administered PIF (1 mg/kg/day) to the experimental groups on the day of BMT, using ALZET osmotic pumps (model 1002, Durect, Cupertino, CA), implanted s.c., slightly posterior to the scapulae. The pumps provided a continuous infusion (0.25 μL/h) for up to 14 days. Mice were followed up to 4 months without further therapy.

GVHD Evaluation

Mice were monitored daily for weight loss, diarrhea, ruffled skin, and survival, as described previously [29]. GVHD disease score, based on all of the foregoing factors (rated on a scale of 0-6), was calculated [6]. In addition, peripheral blood samples were collected from the tail vein at day 18 post-BMT.

Histological Analysis

Representative liver, skin, spleen, and colon samples were obtained from sacrificed mice and fixed in 10% neutral-buffered formalin. Samples were then embedded in paraffin, cut into 10-μm-thick sections, and stained with hematoxylin and eosin. The sections were examined under an optical microscope (CK40; Olympus, Tokyo, Japan), and images were captured with an Olympus DP71 camera. The histopathological score of the liver was based on the extent of leukocyte infiltration into the tissue. The histopathological score of the skin was determined by evaluation of epidermal interface changes, hair loss, and scar formation. The histopathological score of the spleen in the GVL model was based on the degree of leukemic cell infiltration to the tissue. The histopathological score of the colon was based on the degree of edema, crypt loss, crypt hyperplasia, and epithelial ulceration.

Serum Cytokine Evaluation

Mouse serum was obtained from peripheral blood. IL-17 levels were measured by ELISA (Mouse IL-17A ELISA MAX; Biologend, San Diego, CA). IFN-γ and IL-4 levels were also measured by ELISA (eBioscience, Hatfield, UK).

RNA Expression Analysis

Liver and gut samples were obtained from mice at 45 days after semi-allogeneic, allogeneic, or autologous BMT and preserved in RNA Save (Biological Industries, Kibbutz Beit Haemek, Israel). RNA was extracted using the TRIzol reagent protocol (Intron, Carlsbad, CA). DNA was removed from the samples using an RNEasy column and on-column treatment with RNase-free DNAase (Qiagen, Valencia, CA). cDNA was synthesized from 0.5 μg of total mouse liver RNA using the RT First-Strand Kit (SA Biosciences, Frederick, MD), as reported previously [21]. Liver cDNA was applied to a 96-well mouse inflammatory response and autoimmunity microarray plate, and quantitative PCR (SA Biosciences) was performed using a DNA Engine Opticon
RESULTS
PIF Protects against GVHD and Improves Survival after Semiallogeneic BMT

To test the prophylactic effect of PIF on GVHD, F1 (C57BL/6xBALB/c) mice underwent whole-body irradiation followed by semiallogeneic BMT from donor C57BL/6 mice. PIF (1 mg/kg/day) or PBS (control) was administered for 2 weeks via an s.c.-implanted continuous-release osmotic pump, starting on the day of BMT. GVHD disease scores (based on skin lesions, diarrhea, and body weight, on a scale of 0-6), were significantly lower in the PIF-treated mice than in PBS-treated controls at 4 and 6 weeks post-BMT (Figure 1A). The overall improved clinical condition of the PIF-treated mice was reflected by significant body weight recovery (Figure 1B) and improved survival (Figure 1C). All mice experienced weight loss after irradiation therapy and recovered at ~18 days post-BMT. In contrast to controls, the PIF-treated mice continued to gain weight, and 88% of them survived to the end of the experiment. PIF administration had no effect on mice chimerism, which was >96% (Figure S1).

To determine the specificity of PIF’s activity, its anti-GVHD effect was compared in the same model using scrambled peptide (PIFscr) as control. PIFscr has the same amino acids as PIF but in a different order. Mice were monitored for 4 months after transplantation to determine differences in the effect of PIF and PIFscr on survival. In 2 independent experiments, mice receiving PIFscr (1 mg/kg/day for 2 weeks) exhibited no protective effects against acute GVHD. In comparison, those receiving PIF showed significant protection (Figure 1D and E). Notably, only 16% of the mice receiving PIFscr survived for more than 100 days post-BMT, compared with 91% of the PIF-treated mice. Furthermore, although PIF was administered for only 2 weeks, its protective effect lasted for more than 100 days post-BMT (Figure 1E). Our data confirm short-term PIF-induced long-term GVHD protection.

PIF Reduces Skin and Liver Inflammation

We examined the effect of PIF treatment on skin, liver, and colon histopathology. In our semiallogeneic model, GVHD affected mainly the skin and liver (Figure 2), and only occasionally the colon (data not shown). At 45 days post-BMT, mice were sacrificed, and biopsy specimens were obtained from the 3 types of tissues. PIF-treated mice had noticeably fewer and less-severe skin lesions (indicators of GVHD) compared with control mice (Figure 2A). Histological examination of skin biopsy specimens showed severe ulcerations and ruffled skin in control mice, but not in the mice receiving PIF. The differences in histopathological scores were similarly significant. Liver histology revealed lymphocytic infiltrates in control mice, indicating a severe inflammatory immune response, but not in PIF-treated mice (Figure 2B). The differences in histopathological scores were significant here as well. These data document PIF-induced protection of GVHD target organs.

PIF Down-Regulates GVHD-Associated Gene Expression in the Liver and Circulating IL17 Levels

The decreased lymphocyte infiltration to the liver in PIF-treated mice encouraged us to evaluate local inflammatory gene expression, specifically chemokines, cytokines, and their receptors. We used liver cDNA samples in a mouse inflammatory response and autoimmunity microarray, with analysis by quantitative PCR (qPCR). In PBS control-treated mice, proinflammatory gene expression increased by
PIF reduces GVHD after semiallogeneic BMT. Mice underwent BMT with semiallogeneic bone marrow and spleen cells, and received PIF 1 mg/kg/day or PBS via s.c.-implanted osmotic pumps for 2 weeks. (A) GVHD scores at 4 and 6 weeks post-BMT; summary of 4 experiments. The difference between the PBS-treated control mice and the PIF-treated group is highly significant (P < .0001 at 4 weeks and P < .004 at 6 weeks, t test). The line represents median score of each group. (B) Weights from day 0 to day 45 post-BMT. The between-group difference is significant starting at day 27 (P < .009, t test); (C) Survival of mice from day 0 to day 45 post-BMT; summary of 2 experiments. Survival is significantly higher in the PIF-treated group compared with the PBS group (*P < .04, χ² test); (D) GVHD score at 4 weeks and 6 weeks post-BMT; summary of 2 experiments. Mice underwent transplantation as described and were treated with PIF or PIFscr 1 mg/kg/day via s.c.-implanted osmotic pumps for 2 weeks. At 6 weeks, the difference between the PIFscr- and the PIF-treated groups is significant (P < .004, t test); (E) Survival of mice from day 0 to day 112 post-BMT; summary of 2 experiments. Survival is significantly higher in the PIF-treated group compared with the PIFscr group (**P < .0004, χ² test).

PIF Administration Does Not Interfere with the Beneficial GVL Effect

Based on our observation that PIF protects against the development of GVHD, we tested whether its effects interfere with the beneficial GVL effect normally associated with GVHD, using the BCL1 model [7]. This form of leukemia is characterized by extreme splenomegaly and leads to death in 100% of cases. We used spleen weight and survival to evaluate the effect of PIF on GVL activity. Lower spleen weight and increased survival would indicate a beneficial GVL effect.

We first tested PIF administration on the survival of post-BMT leukemic mice. Irradiated mice underwent semiallogeneic BMT as described above and were then inoculated with a large dosage of BCL1 cells (2 × 10⁶). Two test groups were used: 1 group that received PIF 1 mg/kg/day for 2 weeks (BMT PIF group) and 1 group that received PBS for 2 weeks (BMT PBS group). A third group that underwent autologous BMT and was then inoculated with BCL1 cells served as a control group in which no GVL or GVHD effects were expected. Survival at day 16 was similar in the BMT PIF and BMT PBS groups, significantly different from that in the control group (Figure 4A). qPCR analysis on DNA extracted from the spleen of the surviving animals was performed to ensure presence of cancerous cells in all mice.
In the next set of experiments, new mice (divided into 3 groups, as above) with fewer BCL1 cells (1×10^4) were inoculated and sacrificed at 18 days post-BMT. Spleens were weighted and subjected to histological analysis. Spleen weights were markedly lower in both the PIF and PBS groups compared with the control group (Figure 4B), indicating the presence of a GVL effect. Histological analysis demonstrated the presence of leukemic cells in all mice, but the PIF and PBS groups had lower disease burden and better spleen tissue architecture compared with the control group (Figure 4C). These data indicate PIF-induced protection against GVHD coupled with the maintained GVL effect.

PIF is Equally Protective against GVHD in an Allogeneic BMT Model

Most of our results were obtained using a semiallogeneic BMT model (C57BL to C57BL/6xBALB/c F1). We also tested whether PIF equally protects against GVHD in a more severe model after full MHC mismatch, using a C57BL to BALB/c allogeneic murine BMT model. In this model, GVHD affected mostly the liver and colon. Similar to results for the semiallogeneic model, we noted a significant reduction of GVHD with PIF treatment (Figure 5). In addition to improved disease scores (Figure 5A and B) and survival (Figure 5C), improved histopathological scores for liver (data not shown) and colon (Figure 5D) was evident. Histological analysis of the colon showed that PIF significantly reduced ulceration ($P = .02; 4.7$ degrees of freedom). Moreover, PIF reduced GVHD-induced iNOS expression both significantly in the liver (Figure 5E, right) and at borderline significance in the colon (Figure 5E, left).

PIF Regulates Immune Response Primarily through Monocytes

To gain insight into PIF’s effects on the immune response, we examined whether PIF could also modulate allogeneic activation in vitro. To do so, we added PIF at various concentrations to an MLR of Balb/c and C57Bl mouse spleenocytes, and found that PIF exerted a dose-dependent inhibitory effect on allogeneic proliferation (Figure 6A).

PIF is an embryo-derived peptide secreted at the embryo–maternal interface. In our model, it exhibits systemic effects; thus, we posited that PIF might regulate immune cell function. To establish which cells mediate the effects of PIF, we first used FITC-labeled PIF and PIFscr to identify associations with various immune cell populations. FITC-PIF avidly bound bone marrow–derived monocytes (CD11b^+ cells), but exhibited low binding to T cells (CD2) and B cells (CD19) (Figure 6B, upper). Similar results were obtained with circulating monocytes (Figure 6B, lower). Given that monocytes preferably interact with PIF, we examined the effect of CD11b^+ cells differentiated from bone marrow in the presence of PIF in a coculture with anti-CD3 antibody–activated T cells. We found that PIF-pretreated monocytes significantly inhibited activated T cell proliferation (Figure 6C).

PIF Reduces iNOS Activity and Induces Regulatory Phenotype on Monocytes

Among the genes associated with liver GVHD that were down-regulated by PIF (Figure 3), we found elevated expression of the iNOS gene in control mice liver. The increase was almost abolished in PIF-treated mice (Figures 3D and 5D). PIF treatment was also associated with reduced iNOS expression in the colon (Figure 5C). Because iNOS can be synthesized by resident hepatic macrophages (Kupffer cells) in response to LPS and proinflammatory cytokines, as well as by other hepatic cells [32], we tested in vitro whether PIF would have the same inhibitory effect on

Figure 2. PIF reduces skin ulceration and liver inflammation. (A) The upper panels show representative pictures at 1 month post-BMT of a PBS-treated control mouse, a PIF-treated mouse, and a normal control (C57BL/6×BALB/c) F1 mouse. * indicates osmotic pump; †, GVHD skin ulcers. The lower panels show representative histology of skin at 2 months post-BMT, along with average histopathological scores. The differences in histopathological scores are significant ($P \leq .02$, Mann-Whitney U test). (B) Representative liver histology at 2 months post-BMT and average histopathological scores. Lymphocyte infiltration is denoted by an arrow. The differences in histopathological scores are significant ($P \leq .03$, Mann-Whitney U test).

In the next set of experiments, new mice (divided into 3 groups, as above) with fewer BCL1 cells (1×10^4) were inoculated and sacrificed at 18 days post-BMT. Spleens were weighted and subjected to histological analysis. Spleen weights were markedly lower in both the PIF and PBS groups compared with the control group (Figure 4B), indicating the presence of a GVL effect. Histological analysis demonstrated the presence of leukemic cells in all mice, but the PIF and PBS groups had lower disease burden and better spleen tissue architecture compared with the control group (Figure 4C). These data indicate PIF-induced protection against GVHD coupled with the maintained GVL effect.

PIF is Equally Protective against GVHD in an Allogeneic BMT Model

Most of our results were obtained using a semiallogeneic BMT model (C57BL to C57BL/6xBALB/c F1). We also tested whether PIF equally protects against GVHD in a more severe model after full MHC mismatch, using a C57BL to BALB/c allogeneic murine BMT model. In this model, GVHD affected mostly the liver and colon. Similar to results for the semiallogeneic model, we noted a significant reduction of GVHD with PIF treatment (Figure 5). In addition to improved disease scores (Figure 5A and B) and survival (Figure 5C), improved histopathological scores for liver (data not shown) and colon (Figure 5D) was evident. Histological analysis of the colon showed that PIF significantly reduced ulceration ($P = .02; 4.7$ degrees of freedom). Moreover, PIF reduced GVHD-induced iNOS expression both significantly in the liver (Figure 5E, right) and at borderline significance in the colon (Figure 5E, left).

PIF Regulates Immune Response Primarily through Monocytes

To gain insight into PIF’s effects on the immune response, we examined whether PIF could also modulate allogeneic activation in vitro. To do so, we added PIF at various concentrations to an MLR of Balb/c and C57Bl mouse spleenocytes, and found that PIF exerted a dose-dependent inhibitory effect on allogeneic proliferation (Figure 6A).

PIF is an embryo-derived peptide secreted at the embryo–maternal interface. In our model, it exhibits systemic effects; thus, we posited that PIF might regulate immune cell function. To establish which cells mediate the effects of PIF, we first used FITC-labeled PIF and PIFscr to identify associations with various immune cell populations. FITC-PIF avidly bound bone marrow–derived monocytes (CD11b^+ cells), but exhibited low binding to T cells (CD2) and B cells (CD19) (Figure 6B, upper). Similar results were obtained with circulating monocytes (Figure 6B, lower). Given that monocytes preferably interact with PIF, we examined the effect of CD11b^+ cells differentiated from bone marrow in the presence of PIF in a coculture with anti-CD3 antibody–activated T cells. We found that PIF-pretreated monocytes significantly inhibited activated T cell proliferation (Figure 6C).

PIF Reduces iNOS Activity and Induces Regulatory Phenotype on Monocytes

Among the genes associated with liver GVHD that were down-regulated by PIF (Figure 3), we found elevated expression of the iNOS gene in control mice liver. The increase was almost abolished in PIF-treated mice (Figures 3D and 5D). PIF treatment was also associated with reduced iNOS expression in the colon (Figure 5C). Because iNOS can be synthesized by resident hepatic macrophages (Kupffer cells) in response to LPS and proinflammatory cytokines, as well as by other hepatic cells [32], we tested in vitro whether PIF would have the same inhibitory effect on
a macrophage cell line. Indeed, after 3 days of PIF treatment, iNOS expression was reduced, and NO secretion was significantly reduced, in the LPS-activated RAW mouse macrophage cell line (Figure 6D and E).

DISCUSSION

The BMT procedure to treat preexisting malignancy involves the destruction of cancer cells via a harsh conditioning procedure, that is, chemotherapy combined with specific and nonspecific immune responses of transplanted immune cells against the tumor, collectively known as the GVL effect [1,7]. Unfortunately, the nonspecific immune response that contributes to the desired GVL effect is also responsible for inducing deleterious GVHD [8]. To improve post-BMT prognosis, it is necessary to reduce GVHD without eliminating the GVL effect.

Pregnancy is a unique immune state, a “perfect transplant” in which there is no host-versus-graft (mother-versus-embryo) immune reaction, or, conversely, graft-versus-host (embryo-versus-mother) reaction, despite the semiallogeneity or total allogeneity of the fetus [9,14,34]. Moreover, pregnant women do not experience immune suppression, as evidenced by their maintained, adaptive, and strengthened as-needed ability to fight cancer and immune disorders (eg, leukemia, multiple sclerosis) [11,20]. We previously reported that PIF, an embryo-derived peptide, plays a determining role in creating this maternal immune tolerance toward the embryo, as well as promoting implantation [21,23]. In addition, PIF reverses paralysis while promoting neural repair and regeneration, and prevents the development of type 1 diabetes while preserving pancreatic insulin expression [26,28].

Herein we report that short-term, low-dose PIF administration prevents acute GVHD in both semiallogeneic and totally allogeneic BMT models, while maintaining the beneficial GVL effect. A low dose of PIF (1 mg/kg/day) administered for only 2 weeks increased long-term survival in a GVHD model and decreased GVHD-related symptoms.
compared with PIFscr-treated controls for up to 100 days after cessation of therapy. The selected dose is in the same physiological range found in the serum of pregnant women. Our model uses semiallogeneic BMT (C57BL to C57BL/6 × BALB/c F1) [26]. We chose this model because in humans, transplantation from a haploidentical donor (parent to child) is the final option, and total mismatched donors are not yet used. GVHD is less severe in this model compared with our fully allogeneic model; however, long-term survival is poor in the semiallogeneic BMT model as well (Figure 1D). We have confirmed that PIF induced significant protective effects against a more severe form of GVHD using the fully allogeneic model (Figure 5). PIF’s anti-GVHD effect is specific, and could not be replicated by PIFscr administration with a scrambled PIF peptide used as control.

PIF-treated mice maintained their weight and exhibited visibly less skin ulceration and inflammatory immune cell infiltration into the liver. In our semiallogeneic model, GVHD in the gut appeared only sporadically and thus was not examined further. In the allogeneic model, PIF reduced colon ulceration. In contrast, control mice experienced GVHD with expected weight loss, extensive skin ulceration, and liver inflammation. Overall, our data suggest that PIF offers measurable protection against damage in major clinical disease target organs, the skin, liver, and gut.

To provide mechanistic insight into the PIF-induced protection in the GVHD model, we performed several complementary analyses, including gene expression and circulating cytokine levels. We demonstrated that PIF blocks up-regulation of several proinflammatory genes in the livers of mice that underwent BMT, including cytokines, chemokines, and their receptors. Decreased expression of IFN-γ, IL8r, and TNF-α genes, which are associated with Th1 response and inflammation, was documented. Although we did not directly assess IL-17 expression in the liver, we found elevated expression of IL-6 and IL-23a, which are important for Th17 cell differentiation and proliferation. In addition, IL-23R, CCR4, TNF-α, IL-22, and CCL20, which are expressed by Th17 cells, were increased. These findings imply involvement of Th17 in liver GVHD [35]. PIF treatment prevented up-regulation of these genes, indicating elimination of the Th17 response in the liver of mice that underwent BMT.

iNOS-induced NO secretion is a major element in oxidative stress-induced damage. Elimination of the marked elevation in iNOS in GVHD liver by PIF treatment supports the premise that PIF controls this critical pathway as well. Significantly, this protection was further confirmed in both liver and colon in the allogeneic BMT model, in which GVHD is more severe. PIF also reduced iNOS expression, leading to decreased NO secretion in cultured activated macrophages.
Thus, a PIF-induced decrease in iNOS expression leads to reduced NO toxicity associated with liver and colon GVHD. Elevated iNOS expression in the GVHD liver has not been reported previously, which is not surprising given the fact that enhanced iNOS expression is closely related to the severity of disease in patients with autoimmune hepatitis [36] and inflammatory liver disease [37].

A role of NO in the intestinal pathology associated with murine GVHD has been reported previously [38]. The observation that PIF can decrease colon ulcers coupled with decreased iNOS expression supports PIF-induced protection of this target organ as well.

Taken together, our data imply that local regulation of organ inflammation play a critical role in PIF-induced protection. However, because in GVHD the inflammation is equally systemic, we examined circulating cytokine levels as well. PIF treatment reduced levels of circulating IL-17, a cytokine expressed primarily by Th17 cells [4], but did not affect IFN-γ and the Th2 cytokine IL-4 levels. Th17 cells direct the immune response against extracellular bacteria and fungi, but also contribute to autoimmune diseases [4], as well as GVHD [4,5,9,39]. The increased IL-17 levels in murine GVHD serum and expression of Th17-related genes in the liver indicate a Th17-type inflammatory response [5]. The differences in IFN-γ expression in the liver and circulation might be related to differences in systemic effects versus local effects. PIF locally eliminated liver inflammation, but did not affect systemic INF-γ, thereby enabling a maintained Th1 response that may be associated with GVL. Together with our in vitro results, these data suggest that PIF does not block the immune response, but rather gently modifies it by directing APCs to a more regulatory phenotype. This idea is in

Figure 5. PIF protects against GVHD in the allogeneic BMT model. Mice underwent BMT with allogeneic bone marrow and spleen cells, and received PIF 1 mg/kg/day or PBS via s.c.-implanted osmotic pumps for 2 weeks. (A) GVHD score at 4 weeks post-BMT; summary of 2 experiments. The difference between the PBS-treated control mice and the PIF-treated group is significant (P ≤ 0.01, t test). (B) Weight from day 0 to day 23 post-BMT. (C) Survival at 24 days post-BMT. Black indicates % live mice; white, % of dead mice. (D) Colon GVHD. The upper panel summarizes the results of histological analysis of the colon at day 23 post-BMT (n = 6/group). The lower panel presents representative histology pictures of PIF- and PBS-treated allogeneic BMT recipient mice and healthy mice. (E) qPCR analysis of iNOS mRNA expression in liver tissue (right) and in colon tissue (left) of PIF- and PBS-treated allogeneic BMT recipient mice and healthy mice. The between-group differences in liver expression are significant (PIF versus PBS, P ≤ 0.05, Mann-Whitney U test).
line with the observed differences in the effects of embryo-secreted PIF on the uterine milieu and systemic immunity during pregnancy [21,22,24,25]. The reduction in IL-17 is also compatible with the PIF effect observed in the chronic experimental autoimmune encephalomyelitis model, in which spinal cord inflammation was reduced by inhibition of such a critical pathway [26].

Given that the majority of patients undergoing BMT have cancer, we examined whether PIF affects or interferes with the beneficial GVL effect. We report here that PIF does not impair the GVL immune response. Further studies are needed to examine this aspect of PIF-induced preserved GVL effect with different leukemia models to further substantiate this protective effect.

Our group recently reported that PIF orchestrates immune response in human immune cells [24,25]. The data reported herein confirm these observations, demonstrating that monocytes are the main target of PIF. These cells are part of the innate immunity first line of defense; they also serve as APCs, which direct the adaptive immune response. Evidence of PIF-induced regulation of monocytes can be characterized as follows: (1) PIF reduces allogeneic activation in an MLR test; (2) PIF-treated monocytes reduce CD3-activated T cell proliferation; (3) PIF increases expression of the regulatory receptor B7H1 that binds CD28, a TCR coreceptor, which is crucial for GVHD regulation after BMT [33]; and (4) PIF reduces LPS-induced iNOS expression and NO secretion. Thus, the PIF-induced response can be exerted...
through the regulation of APCs. Involvement of additional mechanisms is currently under investigation.

In conclusion, our findings indicate that short-term, low-dose synthetic PIF administration regulates the immune response, thereby preventing deleterious acute GVHD symptoms in the long term while preserving the beneficial GVL effect against cancer. The use of PIF in a clinical setting is warranted and is currently in late-phase planning.

ACKNOWLEDGMENTS

We thank Shimon Slavin (International Center for Cell Therapy and Cancer, Tel-Aviv, Israel), for his friendship and support at the initial stages for this project. We thank Christopher O’Brien (Division of Hepatology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL) and Jeffrey Miller, Betul Oran, and Dan Weisdorf (Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN) for their critical review of initial data and support for potential clinical applications for PIF. We also thank Dr Carmen Booth (Co-Director of Mouse Research Pathology, Comparative Medicine at Yale University School of Medicine) for the mouse colon histology studies. Finally, we thank Barton O’Brien and Amy Carter for editorial assistance.

Financial disclosure: PIF is a proprietary compound owned by BiolIncept, LLC. Dr Eytan R. Barnea is its (uncompensated) Chief Scientist. Hadassah Hospital, Hebrew University received an unrestricted grant from BiolIncept, LLC (to Reuvn Or), Yale University received an unrestricted grant from BiolIncept, LLC (to Michael J. Paidas), Yehudith Azar, Reut Shainer, Osnat Almogi-Hazan, Rachel Bringer, and Susan R. Compton declare no conflicts of interest.

SUPPLEMENTARY DATA

Supplementary data related to this article can be found online at dx.doi.org/10.1016/j.bbmt.2012.12.011.

REFERENCES